Exercises for Stochastic Processes

Tutorial exercises:

- T1. Show that the normal and Poisson distributions are infinitely divisible.
- T2. Determine all infinitely divisible random variables with finite support. (Hint: Consider the Lindeberg-Feller central limit theorem.)
- T3. Let N be a Poisson process with intensity $\lambda > 0, Y_1, Y_2, \ldots$ i.i.d. and N, Y_1, Y_2, \ldots independent. Show "by hand" that the "compound Poisson process" given by

$$X_t := \sum_{n=1}^{N_t} Y_n$$

has stationary and independent increments.

 \rightarrow Page 2

Homework exercises:

H1. (a) We consider Brownian motion with reflection at 0:

$$X_t := |B_t|,$$

where B_t is Brownian motion started at $x \ge 0$. Show that the generator for this process is $\mathcal{L}_r f = \frac{1}{2} f''$ on the domain

$$\{\mathcal{D}(\mathcal{L}_r) = \{ f \in C_0[0,\infty) : f', f'' \in C_0[0,\infty), f'(0) = 0 \},\$$

where the first and second derivative at 0 are to be understood as right-hand derivatives.

Hint: for $f \in C[0, \infty)$, consider the even extension to the entire real line:

$$f_e(x) := \begin{cases} f(x) & \text{if } x \ge 0, \\ f(-x) & \text{if } x < 0. \end{cases}$$

(b) Consider Brownian motion with absorption at 0:

$$X_t := B_t \mathbb{1}_{\{t \le \tau\}},$$

where τ is the first hitting time of 0, and B_t Brownian motion started at $x \ge 0$. What is the generator and corresponding domain for this process?

Hint: for $f \in C[0, \infty)$, consider the odd extension to the entire real line:

$$f_o(x) := \begin{cases} f(x) & \text{if } x \ge 0, \\ 2f(0) - f(-x) & \text{if } x < 0. \end{cases}$$

Deadline: Monday, 14.01.20